Abstract
Insulin-like growth factor-I (IGF-I) plays a key role in normal development. Recent studies show that IGF-I exerts a wide variety actions in the central nervous system during development as well as in adulthood. This report reviews recent developments on IGF-I actions and its mechanisms in the central nervous system, with a focus on its actions during the development of neural stem cells and progenitors. Available data strongly indicate that IGF-I shortens the length of the cell cycle in neuron progenitors during embryonic life and has an influence on the growth of all neural cell types. The phosphatidylinositol-3 kinase/Akt and mitogen-activated protein kinase pathways seem to be the predominant mediators of IGF-I-stimulated neural cell proliferation and survival. IGF-I actions, however, likely depend on cell type, developmental stage, and microenvironmental milieu.