Design and characterization of a chimeric ferritin with enhanced iron loading and transverse NMR relaxation rate

Abstract
This paper describes the design and characterization of a novel ferritin chimera. The iron storage protein ferritin forms a paramagnetic ferrihydrite core. This biomineral, when placed in a magnetic field, can decrease the transverse NMR relaxation times (T 2 and T 2*) of nearby mobile water protons. Ferritin nucleic acid constructs have recently been studied as “probeless” magnetic resonance imaging (MRI) reporters. Following reporter expression, ferritin sequesters endogenous iron and imparts hypointensity to T 2- and T 2*-weighted images in an amount proportional to the ferritin iron load. Wild-type ferritin consists of various ratios of heavy H and light L subunits, and their ratio affects ferritin’s stability and iron storage capacity. We report a novel chimeric ferritin with a fixed subunit stoichiometry obtained by fusion of the L and the H subunits (L*H and H*L) using a flexible linker. We characterize these supramolecular ferritins expressed in human cells, including their iron loading characteristics, hydrodynamic size, subcellular localization, and effect on solvent water T 2 relaxation rate. Interestingly, we found that the L*H chimera exhibits a significantly enhanced iron loading ability and T 2 relaxation compared to wild-type ferritin. We suggest that the L*H chimera may be useful as a sensitive MRI reporter molecule.

This publication has 32 references indexed in Scilit: