Pharmacological Evaluation of Cannabinoid Receptor Ligands in a Mouse Model of Anxiety: Further Evidence for an Anxiolytic Role for Endogenous Cannabinoid Signaling
Top Cited Papers
- 28 March 2006
- journal article
- research article
- Published by Elsevier in The Journal of Pharmacology and Experimental Therapeutics
- Vol. 318 (1) , 304-311
- https://doi.org/10.1124/jpet.106.101287
Abstract
Extracts of Cannabis sativa have been used for their calming and sedative effects for centuries. Recent developments in drug discovery have suggested that modulation of neuronal endogenous cannabinoid signaling systems could represent a novel approach to the treatment of anxiety-related disorders while minimizing the adverse effects of direct acting cannabinoid receptor agonists. In this study, we evaluated the effects of direct cannabinoid receptor agonists and antagonists and endocannabinoid-modulating drugs on anxiety-like behavior in mice using the elevated-plus maze. We found that the direct CB1 receptor agonists (1R,3R,4R)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol (CP 55,940) (0.001-0.3 mg/kg) and 2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo [1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate) (WIN 55212-2) (0.3-10 mg/kg) increased time spent on the open arms (To) at low doses only. At the highest doses tested, both compounds altered overall locomotor activity. In contrast, Δ9-tetrahydrocannabinol (0.25-10 mg/kg) produced a dose-dependent reduction in To. The endocannabinoid uptake/catabolism inhibitor 4-hydroxyphenylarachidonylamide (AM404) (0.3-10 mg/kg) produced an increase in To at low doses and had no effect at the highest dose tested. The fatty acid amide hydrolase inhibitor cyclohexyl carbamic acid 3′-carbamoyl-biphenyl-3-yl ester (URB597) (0.03-0.3 mg/kg) produced a monophasic, dose-dependent increase in To. The CB1 receptor antagonists N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (SR141716) (1-10 mg/kg) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) (1-10 mg/kg) produced dose-related decreases in To. These data indicate that activation of CB1 cannabinoid receptors reduces anxiety-like behaviors in mice and further support an anxiolytic role for endogenous cannabinoid signaling. These results suggest that pharmacological modulation of this system could represent a new approach to the treatment of anxiety-related psychiatric disorders.Keywords
This publication has 41 references indexed in Scilit:
- Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysisProceedings of the National Academy of Sciences, 2005
- Effects of the cannabinoid CB1 receptor antagonist rimonabant in models of emotional reactivity in rodentsBiological Psychiatry, 2005
- Segregation of two endocannabinoid‐hydrolyzing enzymes into pre‐ and postsynaptic compartments in the rat hippocampus, cerebellum and amygdalaEuropean Journal of Neuroscience, 2004
- Endocannabinoid transport tightly controls 2‐arachidonoyl glycerol actions in the hippocampus: effects of low temperature and the transport inhibitor AM404European Journal of Neuroscience, 2004
- Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-αNature, 2003
- Role of Endogenous Cannabinoids in Synaptic SignalingPhysiological Reviews, 2003
- Cannabinoid effects on anxiety-related behaviours and hypothalamic neurotransmittersPharmacology Biochemistry and Behavior, 2001
- Cannabis: pharmacology and toxicology in animals and humansAddiction, 1996
- Anxiolytic effect of cannabidiol derivatives in the elevated plus-mazeGeneral Pharmacology: The Vascular System, 1994
- Changes in Anxiety Feelings Following Marihuana SmokingBritish Journal of Addiction to Alcohol & Other Drugs, 1971