Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate
Top Cited Papers
Open Access
- 1 May 2003
- journal article
- Published by Wiley in Protein Science
- Vol. 12 (5) , 1097-1108
- https://doi.org/10.1110/ps.0241803
Abstract
Pantothenate biosynthesis is essential for the virulence of Mycobacterium tuberculosis, and this pathway thus presents potential drug targets against tuberculosis. We determined the crystal structure of pantothenate synthetase (PS) from M. tuberculosis, and its complexes with AMPCPP, pantoate, and a reaction intermediate, pantoyl adenylate, with resolutions from 1.6 to 2 A. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Its structure reveals a dimer, and each subunit has two domains with tight association between domains. The active-site cavity is on the N-terminal domain, partially covered by the C-terminal domain. One wall of the active site cavity is flexible, which allows the bulky AMPCPP to diffuse into the active site to nearly full occupancy when crystals are soaked in solutions containing AMPCPP. Crystal structures of the complexes with AMPCPP and pantoate indicate that the enzyme binds ATP and pantoate tightly in the active site, and brings the carboxyl oxygen of pantoate near the alpha-phosphorus atom of ATP for an in-line nucleophilic attack. When crystals were soaked with, or grown in the presence of, both ATP and pantoate, a reaction intermediate, pantoyl adenylate, is found in the active site. The flexible wall of the active site cavity becomes ordered when the intermediate is in the active site, thus protecting it from being hydrolyzed. Binding of beta-alanine can occur only after pantoyl adenylate is formed inside the active site cavity. The tight binding of the intermediate pantoyl adenylate suggests that nonreactive analogs of pantoyl adenylate may be inhibitors of the PS enzyme with high affinity and specificity.Keywords
This publication has 24 references indexed in Scilit:
- Pantothenate synthetase from Fusarium oxysporum f. sp. lycopersici is induced by α-tomatineMolecular Genetics and Genomics, 2001
- [20] Processing of X-ray diffraction data collected in oscillation modePublished by Elsevier ,1997
- Characterization and sequence of the Escherichia coli panBCD gene clusterFEMS Microbiology Letters, 1996
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994
- The CCP4 suite: programs for protein crystallographyActa Crystallographica Section D-Biological Crystallography, 1994
- AMoRe: an automated package for molecular replacementActa Crystallographica Section A Foundations of Crystallography, 1994
- Movable lobes and flexible loops in proteins Structural deformations that control biochemical activityFEBS Letters, 1993
- MOLSCRIPT: a program to produce both detailed and schematic plots of protein structuresJournal of Applied Crystallography, 1991
- Improved methods for building protein models in electron density maps and the location of errors in these modelsActa Crystallographica Section A Foundations of Crystallography, 1991
- Conserved cysteine and histidine residues in the structures of the tyrosyl and methionyl‐tRNA synthetasesFEBS Letters, 1982