Pretreatment with mixed‐function oxidase inducers increases the sensitivity of the hepatocyte/DNA repair assay

Abstract
A recent National Toxicology Program evaluation indicates that the rat hepatocyte/DNA repair assay has a high false-negative rate and that it is insensitive to some genotoxic hepatocarcinogens as well as other species and organ-specific carcinogens. In this study, we examined whether the sensitivity of the hepatocyte/DNA repair assay might be increased through animal pretreatment with various hepatic mixed-function oxidase inducers, i.e., Aroclor 1254, phenobarbital, and 3,3′,4,4′-tetrachloroazobenzene (TCAB). The effects on unscheduled DNA synthesis (UDS), a measure of DNA damage and repair, were studied in cultures exposed to known and/or potential carcinogens that had been evaluated as negative or questionable or that produced conflicting results with hepatocytes isolated from uninduced animals. 4,4′-Oxydianiline, 1-nitropy-rene, and TCAB produced concentration-dependent increases in UDS in hepatocytes from rats pretreated with Aroclor 1254. 4,4′-Oxydianiline and TCAB also induced a dose-dependent increase in DNA repair in hepatocytes from rats pretreated with phenobarbital, whereas 1-nitropyrene was negative. 4,4′-Methylenedianiline produced a marginal response, and 3,3′,4,4′-tetrachloroazoxybenzene (TCAOB) was negative in Aroclor- and pheno-barbital-induced hepatocytes; however, TCAOB, as well as TCAB, produced concentration-dependent increases in UDS in TCAB-induced hepatocytes. These data indicate that the limited sensitivity to chemical carcinogens displayed by the hepatocyte/DNA repair assay may be increased by using hepatocytes isolated from animals exposed to hepatic mixed-function oxidase inducers.

This publication has 39 references indexed in Scilit: