DNA Immunization Using Highly Conserved Murine Cytomegalovirus Genes Encoding Homologs of Human Cytomegalovirus UL54 (DNA Polymerase) and UL105 (Helicase) Elicits Strong CD8 T-Cell Responses and Is Protective against Systemic Challenge
- 15 July 2007
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 81 (14) , 7766-7775
- https://doi.org/10.1128/jvi.00633-07
Abstract
Human cytomegalovirus (HCMV) establishes a lifelong infection with the potential for reinfection or viral transmission even in the presence of strong and diverse CD8 T-lymphocyte responses. This suggests that the CMVs skew the host T-cell response in order to favor viral persistence. In this study, we hypothesized that the essential, nonstructural proteins that are highly conserved among the CMVs may represent a novel class of T-cell targets for vaccine-mediated protection due to their requirements for expression and sequence stability, but that the observed subdominance of these antigens in the CMV-infected host results from the virus limiting the T-cell responses to otherwise-protective specificities. We found that DNA immunization of mice with the murine CMV (MCMV) homologs of HCMV DNA polymerase ( M54 ) or helicase ( M105 ) was protective against virus replication in the spleen following systemic challenge, with the protection level elicited by the M54 DNA being comparable to that of DNA expressing the immunodominant IE1 (pp89). Intracellular gamma interferon staining of CD8 T cells from mice immunized with either the M54 or M105 DNAs showed strong primary responses that recalled rapidly after viral challenge. M54- and M105-specific CD8 T cells were detected after the primary MCMV infection, but their levels were not consistently above the background level. The conserved, essential proteins of the CMVs thus represent a novel class of CD8 T-cell targets that may contribute to a successful HCMV vaccine strategy.Keywords
This publication has 20 references indexed in Scilit:
- Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjectsThe Journal of Experimental Medicine, 2005
- Systemic Priming-Boosting Immunization with a Trivalent Plasmid DNA and Inactivated Murine Cytomegalovirus (MCMV) Vaccine Provides Long-Term Protection against Viral Replication following Systemic or Mucosal MCMV ChallengeJournal of Virology, 2005
- Multiple Epitopes in the Murine Cytomegalovirus Early Gene Product M84 Are Efficiently Presented in Infected Primary Macrophages and Contribute to Strong CD8 + -T-Lymphocyte Responses and Protection following DNA ImmunizationJournal of Virology, 2004
- Stalemating a clever opportunist: lessons from murine cytomegalovirusHuman Immunology, 2004
- Cytomegalovirus Misleads Its Host by Priming of CD8 T Cells Specific for an Epitope Not Presented in Infected TissuesThe Journal of Experimental Medicine, 2003
- Functional map of human cytomegalovirus AD169 defined by global mutational analysisProceedings of the National Academy of Sciences, 2003
- Antigens and immunoevasins: opponents in cytomegalovirus immune surveillanceNature Reviews Immunology, 2002
- Direct Recognition of Cytomegalovirus by Activating and Inhibitory NK Cell ReceptorsScience, 2002
- Development of a Vaccine against Murine Cytomegalovirus (MCMV), Consisting of Plasmid DNA and Formalin-Inactivated MCMV, That Provides Long-Term, Complete Protection against Viral ReplicationJournal of Virology, 2002
- Transcription analysis and sequence of the putative murine cytomegalovirus DNA polymerase geneVirology, 1991