Complete parameter identification of a robot from partial pose information

Abstract
The absolute accuracy of a robot depends to a large extent on the accuracy with which its kinematic parameters are known. Many methods have been explored for inferring the kinematic parameters of a robot from measurements taken as it moves. Some require an external global positioning system, usually optical or sonic. We have used instead a simple radial-distance linear transducer (LVDT) which measures the distance from several fixed points in the workspace to the robot's endpoint. This incomplete pose information (one dimensional rather than six dimensional) is accumulated as the robot endpoint is moved within one or more hemispherical "shells" centered about the fixed points. Optimal values for all of the independent kinematic parameters of the robot can then be found. Here we discuss the motivation, theory, implementation, and performance of this particularly easy calibration and parameter identification method. We also address a recent disagreement in the literature about the type of measuring system (in particular, the dimensionality of the pose measurements) needed to fully identify a robot's kinematic parameters.

This publication has 16 references indexed in Scilit: