Abstract
A cDNA for the mouse ribosomal protein (rp) L7a, formerly calledSurf-3, was used as a probe to isolate two homologous genes fromSaccharomyces cerevisiae. The two yeast genes (L4-1 andL4-2) were identified as encodingS. cerevisiae L4 by 2D gel analysis of the product of the in vitro translation of hybrid-selected mRNA and additionally by direct amino acid sequencing. The DNA sequences of the two yeast genes were highly homologous (95%) over the 771 by that encode the 256 amino acids of the coding regions but showed little homology outside the coding region. L4-1 differed from L4-2 by 7 out of the 256 amino acids in the coding region, which is the greatest divergence between the products of any two duplicated yeast ribosomal protein genes so far reported. There is strong homology between the mouserpL7a/Surf-3 and the yeastL4 genes −57% at the nucleic acid level and also 57% at the amino acid level (though some regions reach as much as 80–90% homology). While most yeast ribosomal protein genes contain an intron in their 5′ region bothL4-1 andL4-2 are intronless. The mRNAs derived from each yeast gene contained heterogenous 5′ and 3′ ends but in each case the untranslated leaders were short. TheL4-1 mRNA was found to be much more abundant than theL4-2 mRNA as assessed by cDNA and transcription analyses. Yeast cells containing a disruption of theL4-1 gene formed much smaller colonies than either wild-type or disruptedL4-2 strains. Disruption of bothL4 genes is a lethal event, probably due to an inability to produce functional ribosomes.