Endogenous VEGF Is Required for Visual Function: Evidence for a Survival Role on Müller Cells and Photoreceptors
Top Cited Papers
Open Access
- 3 November 2008
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLOS ONE
- Vol. 3 (11) , e3554
- https://doi.org/10.1371/journal.pone.0003554
Abstract
Vascular endothelial growth factor (VEGF) is well known for its role in normal and pathologic neovascularization. However, a growing body of evidence indicates that VEGF also acts on non-vascular cells, both developmentally as well as in the adult. In light of the widespread use of systemic and intraocular anti-VEGF therapies for the treatment of angiogenesis associated with tumor growth and wet macular degeneration, systematic investigation of the role of VEGF in the adult retina is critical. Using immunohistochemistry and Lac-Z reporter mouse lines, we report that VEGF is produced by various cells in the adult mouse retina and that VEGFR2, the primary signaling receptor, is also widely expressed, with strong expression by Müller cells and photoreceptors. Systemic neutralization of VEGF was accomplished in mice by adenoviral expression of sFlt1. After 14 days of VEGF neutralization, there was no effect on the inner and outer retina vasculature, but a significant increase in apoptosis of cells in the inner and outer nuclear layers. By four weeks, the increase in neural cell death was associated with reduced thickness of the inner and outer nuclear layers and a decline in retinal function as measured by electroretinograms. siRNA-based suppression of VEGF expression in a Müller cell line in vitro supports the existence of an autocrine role for VEGF in Müller cell survival. Similarly, the addition of exogenous VEGF to freshly isolated photoreceptor cells and outer-nuclear-layer explants demonstrated VEGF to be highly neuroprotective. These results indicate an important role for endogenous VEGF in the maintenance and function of adult retina neuronal cells and indicate that anti-VEGF therapies should be administered with caution.Keywords
This publication has 86 references indexed in Scilit:
- Coordinated Vascular Endothelial Growth Factor Expression and Signaling During Skeletal Myogenic DifferentiationMolecular Biology of the Cell, 2008
- VEGF and TGF-β are required for the maintenance of the choroid plexus and ependymaThe Journal of Experimental Medicine, 2008
- Autocrine VEGF Signaling Is Required for Vascular HomeostasisCell, 2007
- Vascular Endothelial Cell Growth Factor-AThe American Journal of Pathology, 2007
- Vascular Endothelial Growth Factor-A Is a Survival Factor for Retinal Neurons and a Critical Neuroprotectant during the Adaptive Response to Ischemic InjuryThe American Journal of Pathology, 2007
- Vascular Endothelial Growth Factor Overexpression Delays Neurodegeneration and Prolongs Survival in Amyotrophic Lateral Sclerosis MiceJournal of Neuroscience, 2007
- p53 in neuronal apoptosisBiochemical and Biophysical Research Communications, 2005
- BDNF is Upregulated by Postnatal Development and Visual Experience: Quantitative and Immunohistochemical Analyses of BDNF in the Rat RetinaInvestigative Opthalmology & Visual Science, 2003
- Identification of a Natural Soluble Form of the Vascular Endothelial Growth Factor Receptor, FLT-1, and Its Heterodimerization with KDRBiochemical and Biophysical Research Communications, 1996
- Failure of blood-island formation and vasculogenesis in Flk-1-deficient miceNature, 1995