Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs.

Abstract
To study the mechanism of defibrillation and the reason for the increased defibrillation efficacy of biphasic waveforms, the potential gradient in a 32 x 30-mm region of the right ventricle in 15 dogs was progressively lowered in four steps while a strong potential gradient field was maintained throughout the rest of the ventricular myocardium. The volume of right ventricle beneath the plaque was 10 +/- 2% of the total ventricular mass. A 10-msec monophasic (eight dogs) or 5/5-msec biphasic (seven dogs) truncated exponential shock 30% above the defibrillation threshold voltage was given via electrodes on the left ventricular apex and right atrium to create the strong potential gradient field. Simultaneously, a weaker shock with the same waveform but opposite polarity was given via mesh electrodes on either side of the small right ventricular region to cancel part of the potential difference in the region and to create one of the four levels of potential gradient fields. Shock potentials and activations we...