Outdiffusion of Be during rapid thermal annealing of high-dose Be-implanted GaAs

Abstract
The outdiffusion of Be implanted into GaAs has been found to be identical after capless or capped (Si3N4 or SiO2 ) rapid thermal annealing (RTA) at 900–1000 °C and to depend on the Be dose and its proximity to the surface. The outdiffusion is more pronounced when the Be implant is shallow (1×1015 cm−2 ). It is demonstrated that the Be outdiffusion is driven by the presence of a highly damaged surface layer. Auger results suggest the formation of a BeOx compound at the surface of a high‐dose (1×1016 cm−2 ) Be‐implanted sample that underwent capless RTA at 1000 °C/1 s. It appears that BeOx formation occurs when the outdiffused Be interacts with the native Ga/As oxides during annealing. All the Be remaining in the GaAs after a >900 °C/2 s RTA is electrically active.