Hund's Rules and Spin Density Waves in Quantum Dots

Abstract
Spin density functional theory is used to calculate the ground state electronic structures of circular parabolic quantum dots. We find that such dots either have a spin configuration determined by Hund's rule or make a spin-density-wave-like state with zero total spin. The dependence of the spin-density-wave amplitudes on the density of the two-dimensional electron gas is studied.