RNA interference of achaete–scute homolog 1 in mouse prostate neuroendocrine cells reveals its gene targets and DNA binding sites
- 13 April 2004
- journal article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 101 (15) , 5559-5564
- https://doi.org/10.1073/pnas.0306988101
Abstract
We have previously characterized a transgenic mouse model (CR2-TAg) of metastatic prostate cancer arising in the neuroendocrine (NE) cell lineage. Biomarkers of NE differentiation in this model are expressed in conventional adenocarcinoma of the prostate with NE features. To further characterize the pathways that control NE proliferation, differentiation, and survival, we established prostate NE cancer (PNEC) cell lines from CR2-TAg prostate tumors and metastases. GeneChip analyses of cell lines harvested at different passages, and as xenografted tumors, indicated that PNECs express consistent features ex vivo and in vivo and share a remarkable degree of similarity with primary CR2-TAg prostate NE tumors. PNECs express mAsh1, a basic helix–loop–helix (bHLH) transcription factor essential for NE cell differentiation in other tissues. RNA interference knockdown of mAsh1 , GeneChip comparisons of treated and control cell populations, and a computational analysis of down-regulated genes identified 12 transcriptional motifs enriched in the gene set. Affected genes, including Adcy9 , Hes6 , Iapp1 , Ndrg4 , c-Myb , and Mesdc2 , are enriched for a palindromic E-box motif, CAGCTG, indicating that it is a physiologically relevant mAsh1 binding site. The enrichment of a c-Myb binding site and the finding that c- Myb is down-regulated by mAsh1 RNA interference suggest that mAsh1 and c- Myb are in the same signaling pathway. Our data indicate that mAsh1 negatively regulates the cell cycle (e.g., via enhanced Cdkn2d , Bub1 expression), promotes differentiation (e.g., through effects on cAMP), and enhances survival by inhibiting apoptosis. PNEC cell lines should be generally useful for genetic and/or pharmacologic studies of the regulation of NE cell proliferation, differentiation, and tumorigenesis.Keywords
This publication has 58 references indexed in Scilit:
- Simultaneous inhibition of GSK3α and GSK3β using hairpin siRNA expression vectorsMolecular Therapy, 2003
- Human-mouse genome comparisons to locate regulatory sitesNature Genetics, 2000
- HASH-1 and E2-2 Are Expressed in Human Neuroblastoma Cells and Form a Functional ComplexBiochemical and Biophysical Research Communications, 2000
- The myb gene family in cell growth, differentiation and apoptosisOncogene, 1999
- Specificity, free energy and information content in protein–DNA interactionsTrends in Biochemical Sciences, 1998
- Requirement of the MASH-1 transcription factor for neuroendocrine differentiation of thyroid C cellsJournal of Neurobiology, 1998
- DNA Binding Specificity of the Basic-Helix-Loop-Helix Protein MASH-1Biochemistry, 1995
- Amylin/islet amyloid polypeptide expression in medullary carcinoma of the thyroid: correlation with the expression of the related calcitonin/CGRP genesClinical Endocrinology, 1994
- Sequence logos: a new way to display consensus sequencesNucleic Acids Research, 1990
- A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreasBiochemical and Biophysical Research Communications, 1986