CMOS-like logic in defective, nanoscale crossbars

Abstract
We present an approach to building defect-tolerant, nanoscale compute fabrics out of assemblies of defective crossbars of configurable FETs and switches. The simplest structure, the complementary/symmetry array, can implement AND-OR-INVERT functions, which are powerful enough to implement general computation. These arrays can be combined to create logic blocks capable of implementing sum-of-product functions, and still larger computations, such as state machines, can be obtained by adding additional routing blocks. We demonstrate the defect tolerance of such structures through experimental studies of the compilation of a small microprocessor onto a crossbar fabric with varying defect rates and compiler mapping parameters. (Some figures in this article are in colour only in the electronic version)