Relative Intensities of Two Rydberg Transitions in the Electron-Impact Spectrum of Water

Abstract
The electron‐impact spectrum of water has been determined using a higher‐resolution electron spectrometer. The intensity distribution of five peaks in the spectrum which belong to two different Rydberg transitions has been investigated at zero scattering angle and electron kinetic energy of 200 V. Quantities proportional to the optical oscillator strengths for these excitations have been compared with absorption coefficients from ultraviolet spectra. The entire electron‐impact spectrum in the region below the first ionization potential shows good agreement with ultraviolet absorption.