Selection of new HSF1 and HSF2 DNA-binding sites reveals difference in trimer cooperativity.
Open Access
- 1 November 1994
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 14 (11) , 7592-7603
- https://doi.org/10.1128/mcb.14.11.7592
Abstract
Multiple heat shock transcription factors (HSFs) have been discovered in several higher eukaryotes, raising questions about their respective functions in the cellular stress response. Previously, we had demonstrated that the two mouse HSFs (mHSF1 and mHSF2) interacted differently with the HSP70 heat shock element (HSE). To further address the issues of cooperativity and the interaction of multiple HSFs with the HSE, we selected new mHSF1 and mHSF2 DNA-binding sites through protein binding and PCR amplification. The selected sequences, isolated from a random population, were composed primarily of alternating inverted arrays of the pentameric consensus 5'-nGAAn-3', and the nucleotides flanking the core GAA motif were nonrandom. The average number of pentamers selected in each binding site was four to five for mHSF1 and two to three for mHSF2, suggesting differences in the potential for cooperative interactions between adjacent trimers. Our comparison of mHSF1 and mHSF2 binding to selected sequences further substantiated these differences in cooperativity as mHSF1, unlike mHSF2, was able to bind to extended HSE sequences, confirming previous observations on the HSP70 HSE. Certain selected sequences that exhibited preferential binding of mHSF1 or mHSF2 were mutagenized, and these studies demonstrated that the affinity of an HSE for a particular HSF and the extent of HSF interaction could be altered by single base substitutions. The domain of mHSF1 utilized for cooperative interactions was transferable, as chimeric mHSF1/mHSF2 proteins demonstrated that sequences within or adjacent to the mHSF1 DNA-binding domain were responsible. We have demonstrated that HSEs can have a greater affinity for a specific HSF and that in mice, mHSF1 utilizes a higher degree of cooperativity in DNA binding. This suggests two ways in which cells have developed to regulate the activity of closely related transcription factors: developing the ability to fully occupy the target binding site and alteration of the target site to favor interaction with a specific factor.Keywords
This publication has 38 references indexed in Scilit:
- Stress-induced oligomerization and chromosomal relocalization of heat-shock factorNature, 1991
- Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability.Genes & Development, 1991
- Cooperative binding of drosophila heat shock factor to arrays of a conserved 5 bp unitCell, 1991
- Differences and Similarities in DNA-Binding Preferences of MyoD and E2A Protein Complexes Revealed by Binding Site SelectionScience, 1990
- Yeast heat shock factor contains separable transient and sustained response transcriptional activatorsCell, 1990
- Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unitCell, 1989
- Yeast heat shock factor is an essential DNA-binding protein that exhibits temperature-dependent phosphorylationCell, 1988
- Germline Transformation Used to Define Key Features of Heat-Shock Response ElementsScience, 1988
- Purification and Properties of Drosophila Heat Shock Activator ProteinScience, 1987
- Development and genetic analysis of bithorax phenocopies in DrosophilaNature, 1974