NADH-quinone oxidoreductase: PSST subunit couples electron transfer from iron–sulfur cluster N2 to quinone
Open Access
- 30 March 1999
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 96 (7) , 4149-4153
- https://doi.org/10.1073/pnas.96.7.4149
Abstract
The proton-translocating NADH-quinone oxidoreductase (EC 1.6.99.3) is the largest and least understood enzyme complex of the respiratory chain. The mammalian mitochondrial enzyme (also called complex I) contains more than 40 subunits, whereas its structurally simpler bacterial counterpart (NDH-1) in Paracoccus denitrificans and Thermus thermophilus HB-8 consists of 14 subunits. A major unsolved question is the location and mechanism of the terminal electron transfer step from iron–sulfur cluster N2 to quinone. Potent inhibitors acting at this key region are candidate photoaffinity probes to dissect NADH-quinone oxidoreductases. Complex I and NDH-1 are very sensitive to inhibition by a variety of structurally diverse toxicants, including rotenone, piericidin A, bullatacin, and pyridaben. We designed (trifluoromethyl)diazirinyl[3H]pyridaben ([3H]TDP) as our photoaffinity ligand because it combines outstanding inhibitor potency, a suitable photoreactive group, and tritium at high specific activity. Photoaffinity labeling of mitochondrial electron transport particles was specific and saturable. Isolation, protein sequencing, and immunoprecipitation identified the high-affinity specifically labeled 23-kDa subunit as PSST of complex I. Immunoprecipitation of labeled membranes of P. denitrificans and T. thermophilus established photoaffinity labeling of the equivalent bacterial NQO6. Competitive binding and enzyme inhibition studies showed that photoaffinity labeling of the specific high-affinity binding site of PSST is exceptionally sensitive to each of the high-potency inhibitors mentioned above. These findings establish that the homologous PSST of mitochondria and NQO6 of bacteria have a conserved inhibitor-binding site and that this subunit plays a key role in electron transfer by functionally coupling iron–sulfur cluster N2 to quinone.This publication has 39 references indexed in Scilit:
- Iron–sulfur clusters/semiquinones in Complex IPublished by Elsevier ,1998
- Complex I inhibitors as insecticides and acaricidesPublished by Elsevier ,1998
- The Proton-translocating NADH-Quinone Oxidoreductase (NDH-1) of Thermophilic Bacterium Thermus thermophilus HB-8Published by Elsevier ,1997
- Structural Studies of the Proton-Translocating NADH-Quinone Oxidoreductase (NDH-1) of Paracoccus denitrificans: Identity, Property, and Stoichiometry of the Peripheral SubunitsBiochemistry, 1996
- PrefaceBiochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1995
- The NADH:ubiquinone oxidoreductase (complex I) of respiratory chainsQuarterly Reviews of Biophysics, 1992
- NADH:ubiquinone oxidoreductase from bovine heart mitochondria A fourth nuclear encoded subunit with a homologue encoded in chloroplast genomesFEBS Letters, 1992
- Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H]dihydrorotenoneFEBS Letters, 1987
- Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 1970
- Studies on the electron transfer system IV. The electron transfer particleBiochimica et Biophysica Acta, 1956