Rapid crystallization of thin solid films

Abstract
Laser-beam-controlled heating appears to be an excellent technique for driving isothermal transformations in a thin solid film on a thick substrate. The transformation is detected by the change in optical properties of the film as it evolves from the initial to the final state. Results are presented for the amorphous-to-crystalline transition in 100 nm thick films of InSb and of some Te alloys on thick glass substrates. Discrimination between interface growth and homogeneous crystallization can be made from the data. The crystallization of InSb films can be desribed by an Avrami equation with a single activation energy of 154 ± 6 kJ/mol over the full range of measured crystallization times between 100μs and 1000s. For low temperatures the results are consistent with differential scanning calorimetry (DSC) measurements. For Te-alloy films, the large temperature interval covered by the experimental method enables clear observation of the curvature of the temperature-time-transmission (T–t–t) plot.