Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model

Abstract
We study noise-induced resonance effects in the leaky integrate-and-fire neuron model with absolute refractory period, driven by a Gaussian white noise. It is demonstrated that a finite noise level may either maximize or minimize the regularity of the spike train. We also partition the parameter space into regimes where either or both of these effects occur. It is shown that the coherence minimization at moderate noise results in a flat spectral response with respect to periodic stimulation in contrast to sharp resonances that are observed for both small and large noise intensities.