Incorporation of indium during molecular beam epitaxy of InGaN

Abstract
We report on the incorporation of In during growth of InxGa1−xN by molecular beam epitaxy under varying In/Ga flux ratios and with different film thicknesses. The incorporation efficiency studied by energy dispersive x-ray microanalysis, high-resolution x-ray diffraction and photoluminescence spectroscopy is strongly affected by the chosen fluxes of Ga and N and is limited by the excess of nitrogen compared to gallium. Furthermore, thick films exhibit a decrease of the In content in growth direction. The behavior can be explained by considering the different stabilities of the two binary compounds InN and GaN.