Measurements of basic parameters in wedged high-energy photon beams using a mini-phantom

Abstract
Basic dosimetric quantities necessary to specify wedged beans (beam quality, wedge factors, output ratios) are obtained by measurements performed in a narrow coaxial mini-phantom for 6, 18 and 15 MV photon beams. To express beam quality, an attenuation coefficient mu is derived from measurements in a mini-phantom at 20 and 10 cm depth. Wedge factors and output ratios are measured as a function of field size at 10 cm water-equivalent depth. In open beams one observes beam softening with increasing distance from the collimator axis for all energies. With an inserted wedge a beam hardening is observed at 6 MV. This beam hardening decreases at 18 MV while at 25 MV a slight beam softening is detected. Larger variations of output ratios with field sizes are observed with a wedge than without a wedge. An equivalent square formula for head-scatter factors can be used with a good accuracy for rectangular wedged fields. For irregular wedged fields a method is proposed to calculate the product of the output ratio and the wedge factor. Measurements and calculations agree within 1% for all irregular wedged fields checked.