k-Dependent Electronic Structure, a Large “Ghost” Fermi Surface, and a Pseudogap in a Layered Magnetoresistive Oxide

Abstract
The k-dependent electronic structure of the low temperature ferromagnetic state of La1.2Sr1.8Mn2O7 was measured using angle-resolved photoemission spectroscopy and calculated using the local spin density approximation (LSDA). The measured near-Fermi energy states display E vs k and symmetry relationships which agree relatively well with the LSDA prediction through much of the Brillouin zone, and the locus of lowest energy excitations matches the predicted large Fermi surface quite well. However, the spectral features are too broad to be well described as Fermi-liquid-like quasiparticles, and they are strongly suppressed from the Fermi energy, i.e., there is a pseudogap in the excitation spectrum. We discuss the spectral properties in terms of strong coupling to a local effect such as a lattice distortion.