Antibiotic Resistance: An Ecological Imbalance
- 28 September 2007
- book chapter
- Published by Wiley
- Vol. 207, 1-14
- https://doi.org/10.1002/9780470515358.ch1
Abstract
Antibiotic resistance thwarts the treatment of infectious diseases worldwide. Although a number of factors can be identified which contribute to the problem, clearly the antibiotic as a selective agent and the resistance gene as the vehicle of resistance are the two most important, making up a 'drug resistance equation'. Both are needed in order for a clinical problem to arise. Given sufficient time and quantity of antibiotic, drug resistance will eventually appear. But a public health problem is not inevitable if the two components of the drug resistance equation are kept in check. Enhancing the emergence of resistance is the case by which resistance determinants and resistant bacteria can spread locally and globally, selected by widespread use of the same antibiotics in people, animal husbandry and agriculture. Antibiotics are societal drugs. Each individual use contributes to the sum total of society's antibiotic exposure. In a broader sense, the resistance problem is ecological. In the framework of natural competition between susceptible and resistant bacteria, antibiotic use has encouraged growth of the resistant strains, leading to an imbalance in prior relationships between susceptible and resistant bacteria. To restore efficacy to earlier antibiotics and to maintain the success of new antibiotics that are introduced, we need to use antibiotics in a way which assures an ecological balance that favours the predominance of susceptible bacterial flora.Keywords
This publication has 15 references indexed in Scilit:
- The Cost of Antibiotic Resistance—from the Perspective of a BacteriumPublished by Wiley ,2007
- Antibiotics That Resist ResistanceScience, 1995
- Balancing the drug-resistance equationTrends in Microbiology, 1994
- Molecular Requirements for the Inhibition of the Tetracycline Antiport Protein and the Effect of Potent Inhibitors on the Growth of Tetracycline-Resistant BacteriaJournal of Medicinal Chemistry, 1994
- Inhibition of the tetracycline efflux antiport protein by 13-thio-substituted 5-hydroxy-6-deoxytetracyclinesJournal of Medicinal Chemistry, 1993
- Antibiotic resistance ofEscherichia coli in fecal samples of healthy people in two different areas in an industrialized countryInfection, 1992
- Genetic basis of tetracycline resistance in urogenital bacteriaAntimicrobial Agents and Chemotherapy, 1990
- High frequency of antimicrobial resistance in human fecal floraAntimicrobial Agents and Chemotherapy, 1988
- ANTIBIOTIC-RESISTANT BACTERIA IN FOOD OF MAN AND ANIMALSPublished by Elsevier ,1984
- Changes in Intestinal Flora of Farm Personnel after Introduction of a Tetracycline-Supplemented Feed on a FarmNew England Journal of Medicine, 1976