Determination of disulfide bond arrangement in bombyxin-IV, an insulin superfamily peptide from the silkworm,Bombyx mori, by combination of thermolysin digestion of natural peptide and selective synthesis of disulfide bond isomers

Abstract
The mode of disulfide linkages in bombyxin-IV, an insulin superfamily peptide consisting of A- and B-chains, was determined as A6–A11, A7–B10, and A20–B22. An intermolecular bond of A20–B22 was identified by sequencing and mass spectrometric analysis of the fragments generated by thermolysin digestion of natural bombyxin-IV. The mode of the remaining two bridges was determined by chemical and selective synthesis of three possible disulfide bond isomers of bombyxin-IV. A- and B-chains were synthesized by solid-phase method, and three disulfide bonds were bridged stepwise and in a fully controlled manner. Retention time on reversed-phase high-performance liquid chromatography (HPLC), thermolysin digests, and biological activity of the synthetic [A6–A11, A7–B10, A20–B22-cystine]-bombyxin-IV revealed that it was identical with the natural bombyxin-IV. Two other isomers with respect to disulfide bond arrangement, [A6–A7, A11–B10, A20–B22-cystine]- and [A6–B10, A7–A11, A20–B22-cystine]-bombyxin-IVs, were distinguishable from the natural one by use of HPLC, thermolysin digestion, and bioassay.