Anthracene-9-carboxylic acid inhibits an apical membrane, chloride conductance in canine tracheal epithelium
- 1 February 1984
- journal article
- research article
- Published by Springer Nature in The Journal of Membrane Biology
- Vol. 78 (1) , 61-71
- https://doi.org/10.1007/bf01872533
Abstract
Canine tracheal epithelium secretes Cl from the submucosal to the mucosal surface via an electrogenic transport process that appears to apply to a wide variety of secretory epithelia. Cl exit across the apical membrane is thought to be a passive, electrically conductive process. To examine the cellular mechanism of Cl secretion we studied the effect of anthracene-9-carboxylic acid (9-AC), an agent known to inhibit the Cl conductance of muscle membrane. When added to the mucosal solution, 9-AC rapidly and reversibly decreases short-circuit current and transepithelial conductance, reflecting a reduction in electrogenic Cl secretion. The inhibition is concentration-dependent and 9-AC does not appear to compete with Cl for the transport process. The decrease in current and conductance results from a decrease in the net and both unidirectional transepithelial Cl fluxes without substantial alterations of Na fluxes. Furthermore, 9-AC specifically inhibits a Cl conductance: tissues bathed in Cl-free solutions showed no response to 9-AC. Likewise, when the rate of secretion and Cl conductance were minimized with indomethacin, addition of 9-AC did not alter transepithelial conductance. In contrast, neither removal of Na from the media nor blockade of the apical Na conductance with amiloride prevented a 9-AC-induced decrease in transepithelial conductance. We also found that the effect of 9-AC is independent of transepithelial transport: 9-AC decreases transepithelial conductance despite inhibition of Cl secretion with ouabain or furosemide. Intracellular electrophysiologic techniques were used to localize the effect of 9-AC to a reduction of the electrical conductance of the apical cell membrane: 9-AC hyperpolarizes the electrical potential difference across the apical membrane and decreases its relative conductance. 9-AC also prevents the characteristic changes in the cellular electrical potential profile, transepithelial conductance, and the ratio of membrane conductances produced by a reduction in mucosal bathing solution Cl concentration. These results indicate that 9-AC inhibits Cl secretion in tracheal epithelium by blocking an electrically conductive Cl exit step in the apical cell membrane. Thus, they support a cellular model of Cl secretion in which Cl leaves the cell across a Cl permeable apical membrane driven by its electrochemical gradient.This publication has 20 references indexed in Scilit:
- Inhibition of chloride secretion by furosemide in canine tracheal epitheliumThe Journal of Membrane Biology, 1983
- Chloride secretion by canine tracheal epithelium: III. Membrane resistances and electromotive forcesThe Journal of Membrane Biology, 1983
- Intracellular chloride activities in canine tracheal epithelium. Direct evidence for sodium-coupled intracellular chloride accumulation in a chloride-secreting epithelium.Journal of Clinical Investigation, 1983
- Electrophysiology of Cl secretion in canine tracheaThe Journal of Membrane Biology, 1983
- Chloride secretion by canine tracheal epithelium: II. The cellular electrical potential profileThe Journal of Membrane Biology, 1982
- Chloride secretion by canine tracheal epithelium: I. Role of intracellular cAMP levelsThe Journal of Membrane Biology, 1982
- Changes in Intracellular K Activities after Stimulation of Cl Secretion in Canine Tracheal EpitheiumChest, 1982
- Chloride efflux measurements in mammalian skeletal muscleMuscle & Nerve, 1980
- On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids.The Journal of general physiology, 1977
- Salicylate: A Structure-Activity Study of its Effects on Membrane PermeabilityScience, 1972