Abstract
Continuing progress is being made in understanding the regulation of pancreatic acinar cell function by receptor-activated intracellular signaling mechanisms. Knowledge of how ligands interact at the molecular level with their receptors and activate heterotrimeric G proteins is increasing. In addition to inositol trisphosphate, intracellular messengers include cyclic ADP ribose, nicotinic acid adenine dinucleotide phosphate, arachidonic acid, and diacylglycerol. Ca2+ signaling involves the interaction of inositol trisphosphate, cyclic ADP ribose, and nicotinic acid adenine dinucleotide phosphate with distinct subcellular Ca2+ stores. Ca2+ signals ultimately induce exocytosis of zymogen granules and identification of the proteins involved on the granule and plasma membrane, and understanding of their roles is continuing. Other receptor-activated signaling pathways primarily regulate nonsecretory events. Considerable progress has been made in understanding how the mammalian target of rapamycin pathway regulates protein synthesis through translation factors and ribosomal proteins. Other pathways in acinar cells include the mitogen-activated protein kinases, the tyrosine kinases, and the transforming growth factor-β–Smad pathways.

This publication has 51 references indexed in Scilit: