Order-Chaos-Order Transitions in Electrosprays: The Electrified Dripping Faucet

Abstract
Electrosprays have diverse applications including protein analysis, electrospinning, and nanoencapsulation for drug delivery. We show that a variety of electrospray regimes exhibit fundamental analogy with the nonlinear dynamics of a dripping faucet. The applied voltage in electrosprays results in additional period doublings and temporal order-chaos-order transitions. Attractors in the return maps show logarithmic self-similarity in time, suggesting self-similar capillary waves on the meniscus. The bifurcations in ejection time can be explained by phase variations between capillary waves and pinch-off conditions and by ejection mode changes due to contact angle variations.