Flatness and defect of non-linear systems: introductory theory and examples

Abstract
We introduce flat systems, which are equivalent to linear ones via a special type of feedback called endogenous. Their physical properties are subsumed by a linearizing output and they might be regarded as providing another nonlinear extension of Kalman's controllability. The distance to flatness is measured by a non-negative integer, the defect. We utilize differential algebra where flatness- and defect are best defined without distinguishing between input, state, output and other variables. Many realistic classes of examples are flat. We treat two popular ones: the crane and the car with n trailers, the motion planning of which is obtained via elementary properties of plane curves. The three non-flat examples, the simple, double and variable length pendulums, are borrowed from non-linear physics. A high frequency control strategy is proposed such that the averaged systems become flat.

This publication has 40 references indexed in Scilit: