A non‐hypoxic, ROS‐sensitive pathway mediates TNF‐α‐dependent regulation of HIF‐1α

Abstract
A non-hypoxic, reactive oxygen species (ROS)-sensitive pathway mediating tumor necrosis factor-alpha (TNF-alpha)-dependent regulation of hypoxia-inducible factor-1alpha (HIF-alpha) was investigated in vitro. TNF-alpha mediated the translocation of HIF-1alpha, associated with up-regulating its activity under normoxia. Analysis of the mode of action of TNF-alpha revealed the accumulation of hydrogen peroxide (H2O2), superoxide anion (O(2-.)) and hydroxyl radical (.OH). Antioxidants purported as prototypical scavengers of H2O2 and .OH, attenuated TNF-alpha-induced HIF-1alpha activation, and blockading NADPH-oxidase by scavenging O(2-.) reduced the activity of HIF-1alpha. Inhibition of the mitochondrion complex I abrogated TNF-alpha-dependent activation of HIF-1alpha. Interrupting the respiratory chain reversed the excitatory effect of TNF-alpha on HIF-1alpha. These results indicate a non-hypoxic pathway mediating cytokine-dependent regulation of HIF-1alpha in a ROS-sensitive mechanism.