Abstract
The theory of multiphoton ionization for an atomic system of arbitrary complexity is developed using a density matrix formalism. An expression is obtained which determines the differential N-photon ionization cross section as a function of the polarization states of the target atom and the incident radiation. The parameters which characterize the photo-electron angular distribution are related to the general reduced matrix elements for the N-photon transition. Two-photon ionization of unpolarized atoms is treated as an illustration of the use of the theory. The dependence of the multiphoton ionization cross section on the polarization state of the incident radiation, which has been observed in two- and three-photon ionization of Cs, is accounted for by the theory. Finally, the photoelectron spin polarization produced by the multiphoton ionization of unpolarized atoms, like the analogous polarization resulting from single-photon ionization, is found to depend on the circular polarization of the incident radiation.