Genome Rearrangement and Nitrogen Fixation in Anabaena Blocked by Inactivation of xisA Gene

Abstract
Two genome rearrangements involving 11- and 55-kilobase DNA elements occur during the terminal differentiation of an Anabaena photosynthetic vegetative cell into a nitrogen-fixing heterocyst. The xisA gene, located on the nifD 11-kilobase DNA element, was inactivated by recombination between the chromosome and a copy of the xisA gene that was mutated by inserting an antibiotic gene cassette. Site-directed inactivation of the Anabaena xisA gene blocked rearrangement of the 11-kilobase element and nitrogen fixation, but did not affect rearrangement of the 55-kilobase element, heterocyst differentiation, or heterocyst pattern formation.