ChandraObservation of Abell 2065: An Unequal Mass Merger?

Abstract
We present an analysis of a 41 ks Chandra observation of the merging cluster Abell 2065 with the ACIS-I detector. Previous observations with ROSAT and ASCA provided evidence for an ongoing merger, but also suggested that there were two surviving cooling cores, which were associated with the two cD galaxies in the center of the cluster. The Chandra observation reveals only one X-ray surface brightness peak, which is associated with the more luminous, southern cD galaxy. The gas related with that peak is cool and displaced slightly from the position of the cD. The data suggest that this cool material has formed a cold front. On the other hand, in the higher spatial resolution Chandra image, the second feature to the north is not associated with the northern cD; rather, it appears to be a trail of gas behind the main cD. We argue that only one of the two cooling cores has survived the merger, although it is possible that the northern cD may not have possessed a cool core prior to the merger. We use the cool core survival to constrain the kinematics of the merger and we find an upper limit of ~< 1900 km/s for the merger relative velocity. A surface brightness discontinuity is found at ~140 kpc from the southern cD; the Mach number for this feature is ${\cal M} = 1.66^{+0.24}_{-0.32}$, although its nature (shock or cold front) is not clear from the data. We argue that Abell 2065 is an example of an unequal mass merger. The more massive southern cluster has driven a shock into the ICM of the infalling northern cluster, which has disrupted the cool core of the latter, if one existed originally. We estimate that core crossing occurred a few hundred Myr ago, probably for the first time.Comment: 15 pages, 10 figures, ApJ in pres
All Related Versions

This publication has 16 references indexed in Scilit: