A comparison of radio-echo sounding data and electrical conductivity of the GRIP ice core

Abstract
The depth of reflecting layers in Arctic ice sheets has been determined by electromagnetic echo sounding, using a varying distance between transmitter and receiver to determine the radar wave velocity. The depth of the radar reflecting layers is compared with a profile of electrical conductivity measurements (ECMs) from the Greenland Ice Core Project (GRIP) ice core, in order to determine the velocity of the radar waves in the ice cap. By using several reflecting layers, it is possible to isolate the firn correction of the wave velocity and to estimate the accuracy of the calculated electromagnetic wave velocity. The measured firn correction is compared with the correction calculated from the density profile, and a comparison between the depth profiles of ECM and radar based on the corrected electromagnetic wave velocity is presented. This profile shows that acid layers, which originate from major volcanic eruptions, show up as reflecting radar horizons.