Molecular dynamics simulation of sucrose‐ and trehalose‐coated carboxy‐myoglobin
- 18 February 2005
- journal article
- research article
- Published by Wiley in Proteins-Structure Function and Bioinformatics
- Vol. 59 (2) , 291-302
- https://doi.org/10.1002/prot.20414
Abstract
We performed a room temperature molecular dynamics (MD) simulation on a system containing 1 carboxy-myoglobin (MbCO) molecule in a sucrose–water matrix of identical composition (89% [sucrose/(sucrose + water)] w/w) as for a previous trehalose–water–MbCO simulation (Cottone et al., Biophys J 2001;80:931–938). Results show that, as for trehalose, the amplitude of protein atomic mean-square fluctuations, on the nanosecond timescale, is reduced with respect to aqueous solutions also in sucrose. A detailed comparison as a function of residue number evidences mobility differences along the protein backbone, which can be related to a different efficacy in bioprotection. Different heme pocket structures are observed in the 2 systems. The joint distribution of the magnitude of the electric field at the CO oxygen atom and of the angle between the field and the CO unit vector shows a secondary maximum in sucrose, absent in trehalose. This can explain the CO stretching band profile (A substates distribution) differences evidenced by infrared spectroscopy in sucrose- and trehalose-coated MbCO (Giuffrida et al., J Phys Chem B 2004;108:15415–15421), and in particular the appearance of a further substate in sucrose. Analysis of hydrogen bonds at the protein–solvent interface shows that the fraction of water molecules shared between the protein and the sugar is lower in sucrose than in trehalose, in spite of a larger number of water molecules bound to the protein in the former system, thus indicating a lower protein–matrix coupling, as recently observed by Fourier transform infrared (FTIR) experiments (Giuffrida et al., J Phys Chem B 2004;108:15415–15421). Proteins 2005.Keywords
This publication has 46 references indexed in Scilit:
- Mean-Square Displacement Relationship in Bioprotectant Systems by Elastic Neutron ScatteringBiophysical Journal, 2004
- Lessons from nature: the role of sugars in anhydrobiosisComparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001
- Molecular Dynamics Simulation of Carboxy-Myoglobin Embedded in a Trehalose-Water MatrixBiophysical Journal, 2001
- Molecular Simulation of Sucrose Solutions near the Glass Transition TemperatureThe Journal of Physical Chemistry A, 2001
- Computer Simulation of the Cryoprotectant Disaccharide α,α-Trehalose in Aqueous SolutionThe Journal of Physical Chemistry A, 1999
- A reduction of protein specific motions in co-ligated myoglobin embedded in a trehalose glassEuropean Biophysics Journal, 1998
- Is trehalose special for preserving dry biomaterials?Biophysical Journal, 1996
- Evidence for Damped Hemoglobin Dynamics in a Room Temperature Trehalose GlassThe Journal of Physical Chemistry, 1996
- Protein Reaction Kinetics in a Room-Temperature GlassScience, 1995
- Protective Effect of Disaccharides on Restriction Endonucleases during Drying under Vacuum1The Journal of Biochemistry, 1995