Spatial Coordinate Coding to reduce histogram representations, Dominant Angle and Colour Pyramid Match

Abstract
Spatial Pyramid Match lies at a heart of modern object category recognition systems. Once image descriptors are expressed as histograms of visual words, they are further deployed across spatial pyramid with coarse-to-fine spatial location grids. However, such representation results in extreme histogram vectors of 200K or more elements increasing computational and memory requirements. This paper investigates alternative ways of introducing spatial information during formation of histograms. Specifically, we propose to apply spatial location information at a descriptor level and refer to it as Spatial Coordinate Coding. Alternatively, x, y, radius, or angle is used to perform semi-coding. This is achieved by adding one of the spatial components at the descriptor level whilst applying Pyramid Match to another. Lastly, we demonstrate that Pyramid Match can be applied robustly to other measurements: Dominant Angle and Colour. We demonstrate state-of-the art results on two datasets with means of Soft Assignment and Sparse Coding.

This publication has 9 references indexed in Scilit: