Abstract
This study is devoted to the onset of convection in differentially heated cylinders under gravity modulation. It specifically concerns the case of a vertical cylinder of infinite length, when a negative temperature gradient is maintained in the upward direction. The effect of modulation on the stability limits given by linear theory in the standard steady case is analysed. A method based on Floquet theory is proposed in the case of small values of the modulation amplitude ε, for a fixed value of the frequency ω. A general technique, called matrix method, which can easily be adapted to various kinds of geometries and boundary conditions, has been developed. Analytical approaches have been derived in some cases. Finally, an asymptotic analysis is presented for large ω, under very general boundary conditions and periodic constraints, for finite ε. An asymptotic relation is established for the onset of convection under periodic gravity modulation for large ω values, when ε [Lt ] ω; the mathematical and physical foundations of this inequality are discussed.

This publication has 17 references indexed in Scilit: