Modulation of membrane surface curvature by peptide-lipid interactions

Abstract
Recent reports on the interaction of cardiotoxin and melittin with phospholipid model membranes are reviewed and analyzed. These types of peptide toxins are able to modulate lipid surface curvature and polymorphism in a highly lipid-specific way. It is demonstrated that the remarkable variety of effects of melittin on the organization of different membrane phospholipids can be understood in a relatively simple model, based on the shape-structure concept of lipid polymorphism and taking into account the position of the peptide molecule with respect to the lipids. Based on the strong preference of the peptides for negatively charged lipids and the structural consequences thereof, and on preliminary studies of signal peptide-lipid interaction, a role of inverted or concave lipid structures in the process of protein translocation across membranes is suggested.