Monte Carlo study of the ground state of bosons interacting with Yukawa potentials
- 1 February 1978
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 17 (3) , 1070-1081
- https://doi.org/10.1103/physrevb.17.1070
Abstract
We study the ground state of a system of bosons interacting with Yukawa potentials, in both the liquid and solid phases, with a variational and an exact Monte Carlo method. A number of different wave functions to describe the solid phase are investigated. It is found that a Gaussian-Jastrow wave function has a lower energy than either a periodic wave function or a symmetrized Gaussian-Jastrow wave function. We have determined the liquid-solid coexistence curve and discovered that the solid melts when Lindemann's ratio exceeds 0.28. We have also determined that if the solid is superfluid, the superfluid fraction is less than 0.13. A significant conclusion of the comparison of exact and variational results is that the Gaussian-Jastrow wave function for a solid is better than the Jastrow function for liquid when used in a variational calculation. Thus a bias will be introduced when variational calculations are used to estimate crystallization and melting densities. There is a class of Yukawa potentials which do not have a crystalline phase at any density.Keywords
This publication has 14 references indexed in Scilit:
- Exact calculations of the ground state of model neutron matterPhysical Review D, 1976
- New variational treatment of the ground state of solid heliumPhysical Review B, 1976
- Theory for the ground state of quantum crystalsPhysics Letters A, 1976
- Quantum hard spheres in a channelPhysical Review A, 1974
- Helium at zero temperature with hard-sphere and other forcesPhysical Review A, 1974
- Speculations on Bose-Einstein Condensation and Quantum CrystalsPhysical Review A, 1970
- Energy of a Boson Fluid with Lennard-Jones PotentialsPhysical Review A, 1970
- Ground State of Solid Helium-4 and -3Physical Review B, 1968
- Ground State of LiquidPhysical Review B, 1965
- Preliminary Results from a Recalculation of the Monte Carlo Equation of State of Hard SpheresThe Journal of Chemical Physics, 1957