Abstract
The Calvin cycle of carbon dioxide fixation constitutes a biosynthetic pathway for the generation of (multi-carbon) intermediates of central metabolism from the one-carbon compound carbon dioxide. The product of this cycle can be used as a precursor for the synthesis of all components of cell material. Autotrophic carbon dioxide fixation is energetically expensive and it is therefore not surprising that in the various groups of autotrophic bacteria the operation of the cycle is under strict metabolic control. Synthesis of phosphoribulokinase and ribulose-1,5-bisphosphate carboxylase, the two enzymes specifically involved in the Calvin cycle, is regulated via end-product repression. In this control phosphoenolpyruvate most likely has an alarmone function. Studies of the enzymes isolated from various sources have indicated that phosphoribulokinase is the target enzyme for the control of the rate of carbon dioxide fixation via the Calvin cycle through modulation of existing enzyme activity. In general, this enzyme is strongly activated by NADH, whereas AMP and phosphoenol-pyruvate are effective inhibitors. Recent studies of phosphoribulokinase inAlcaligenes eutrophus suggest that this enzyme may also be regulated via covalent modification.