Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae
Open Access
- 1 January 2006
- journal article
- Published by American Society for Microbiology in Eukaryotic Cell
- Vol. 5 (1) , 167-173
- https://doi.org/10.1128/ec.5.1.167-173.2006
Abstract
Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to the HXT promoters. It is well established that glucose induces degradation of Mth1, but the fate of its paralogue Std1 has been less clear. We present evidence that glucose-induced degradation of Std1 via the SCF Grr1 ubiquitin-protein ligase and the 26S proteasome is obscured by feedback regulation of STD1 expression. Disappearance of Std1 in response to glucose is accelerated when glucose induction of STD1 expression due to feedback regulation by Rgt1 is prevented. The consequence of relieving feedback regulation of STD1 expression is that reestablishment of repression of HXT1 expression upon removal of glucose is delayed. In contrast, degradation of Mth1 is reinforced by glucose repression of MTH1 expression: disappearance of Mth1 is slowed when glucose repression of MTH1 expression is prevented, and this results in a delay in induction of HXT3 expression in response to glucose. Thus, the cellular levels of Std1 and Mth1, and, as a consequence, the kinetics of induction and repression of HXT gene expression, are closely regulated by interwoven transcriptional and posttranslational controls mediated by two different glucose-sensing pathways.Keywords
This publication has 39 references indexed in Scilit:
- Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiaeBiochemical Society Transactions, 2005
- How the Rgt1 Transcription Factor of Saccharomyces cerevisiae Is Regulated by GlucoseGenetics, 2005
- Specificity and Regulation of DNA Binding by the Yeast Glucose Transporter Gene Repressor Rgt1Molecular and Cellular Biology, 2003
- Glucose-mediated Phosphorylation Converts the Transcription Factor Rgt1 from a Repressor to an ActivatorPublished by Elsevier ,2003
- Active Snf1 protein kinase inhibits expression of the Saccharomyces cerevisiae HXT1 glucose transporter geneBiochemical Journal, 2002
- Glucose-sensing and -signalling mechanisms in yeastFEMS Yeast Research, 2002
- Glucose-sensing and -signalling mechanisms in yeastFEMS Yeast Research, 2002
- Mth1 receives the signal given by the glucose sensors Snf3 and Rgt2 in Saccharomyces cerevisiae‡Molecular Microbiology, 2000
- The Saccharomyces cerevisiae ubiquitin–proteasome systemPhilosophical Transactions Of The Royal Society B-Biological Sciences, 1999
- New heterologous modules for classical or PCR‐based gene disruptions in Saccharomyces cerevisiaeYeast, 1994