Abstract
The author describes a path planning technique for robotic manipulators and mobile robots in the presence of stationary obstacles. The planning consists of applying potential fields around configuration-space obstacles and using these fields to select a safe path for the robot to follow. The advantage of using potential fields in path planning is that they offer a relatively fast and effective way to solve for safe paths around obstacles. In the proposed method of path planning, a trial path is chosen and then modified under the influence of the potential field until an appropriate path is found. By considering the entire path, the problem of being trapped in a local minimum is greatly reduced, allowing the method to be used for global planning. The algorithm was tried with success on many different realistic planning problems. By way of illustration, the algorithm is applied to a two-dimensional revolute manipulator, a mobile robot capable of translation only, and a mobile robot capable of both translation and rotation.<>

This publication has 19 references indexed in Scilit: