String or M theory axion as a quintessence
- 21 July 2000
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 62 (4) , 043509
- https://doi.org/10.1103/physrevd.62.043509
Abstract
A slow-rolling scalar field (Q≡quintessence) with potential energy has been proposed as the origin of an accelerating universe at present. We investigate the effective potential of Q in the framework of a supergravity model including the quantum corrections induced by generic (nonrenormalizable) couplings of Q to the gauge and charged matter multiplets. It is argued that the Kähler potential, superpotential, and gauge kinetic functions of the underlying supergravity model are required to be invariant under the variation of Q with an extremely fine accuracy in order to provide a working quintessence potential. Applying these results for string or M theory, we point out that the heterotic M theory or type-I string axion can be a plausible candidate for quintessence if (i) it does not couple to the instanton number of gauge interactions not weaker than those of the standard model and (ii) the modulus partner of the periodic quintessence axion has a large vacuum expectation value: It is stressed that such a large gives the gauge unification scale at around the phenomenologically favored value GeV. To provide an accelerating universe, the quintessence axion should be near the top of its effective potential at present, which requires severe fine tuning of the initial condition of Q and in the early universe. We discuss a late time inflation scenario based on the modular and invariance of the moduli effective potential, yielding the required initial condition in a natural manner if the Kähler metric of the quintessence axion superfield receives a sizable nonperturbative contribution.
Keywords
All Related Versions
This publication has 61 references indexed in Scilit:
- Measurements of Ω and Λ from 42 High‐Redshift SupernovaeThe Astrophysical Journal, 1999
- Resolving the cosmological missing energy problemPhysical Review D, 1999
- Cluster Abundance Constraints for Cosmological Models with a Time‐varying, Spatially Inhomogeneous Energy Component with Negative PressureThe Astrophysical Journal, 1998
- Observational tests of x-matter modelsMonthly Notices of the Royal Astronomical Society, 1998
- Cosmological Imprint of an Energy Component with General Equation of StatePhysical Review Letters, 1998
- CDM models with a smooth componentPhysical Review D, 1997
- Late-time cosmological phase transitions: Particle-physics models and cosmic evolutionPhysical Review D, 1992
- The cosmological constant problemReviews of Modern Physics, 1989
- Why there is nothing rather than something: A theory of the cosmological constantNuclear Physics B, 1988
- Cosmological consequences of a rolling homogeneous scalar fieldPhysical Review D, 1988