Hardware design and arithmetic algorithms for a variable-precision, interval arithmetic coprocessor

Abstract
This paper presents the hardware design and arithmetic algorithms for a coprocessor that performs variable-precision, interval arithmetic. The coprocessor gives the programmer the ability to specify the precision of the computation, determine the accuracy of the result, and recompute inaccurate results with higher precision. Direct hardware support and efficient algorithms for variable-precision, interval arithmetic greatly improve the speed, accuracy, and reliability of numerical computations. Performance estimates indicate that the coprocessor is 200 to 1,000 times faster than a software package for variable-precision, interval arithmetic. The coprocessor can be implemented on a single chip with a cycle time that is comparable to IEEE double-precision floating point coprocessors.

This publication has 17 references indexed in Scilit: