Concomitant combination therapy for HIV infection preferable over sequential therapy with 3TC and non-nucleoside reverse transcriptase inhibitors
- 12 November 1996
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 93 (23) , 13152-13157
- https://doi.org/10.1073/pnas.93.23.13152
Abstract
Exposure to 3TC of HIV-1 mutant strains containing non-nucleoside reverse transcriptase inhibitor (NNRTI)-specific mutations in their reverse transcriptase (RT) easily selected for double-mutant viruses that had acquired the characteristic 184-Ile mutation in their RT in addition to the NNRTI-specific mutations. Conversely, exposure of 3TC-resistant 184-Val mutant HIV-1 strains to nine different NNRTIs resulted in the rapid emergence of NNRTI-resistant virus strains at a time that was not more delayed than when wild-type HIV-1(IIIB) was exposed to the same compounds. The RTs of these resistant virus strains had acquired the NNRTI-characteristic mutations in addition to the preexisting 184-Val mutation. Surprisingly, when the 184-Ile mutant HIV-1 was exposed to a variety of NNRTIs, the 188-His mutation invariably occurred concomitantly with the 184-Ile mutation in the HIV-1 RT. Breakthrough of this double-mutant virus was markedly accelerated as compared with the mutant virus selected from the wild-type or 184-Val mutant HIV-1 strain. The double (184-Ile + 188-His) mutant virus showed a much more profound resistance profile against the NNRTIs than the 188-His HIV-1 mutant. In contrast with the sequential chemotherapy, concomitant combination treatment of HIV-1-infected cells with 3TC and a variety of NNRTIs resulted in a dramatic delay of virus breakthrough and resistance development.Keywords
This publication has 25 references indexed in Scilit:
- HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation TimeScience, 1996
- Role of Methionine 184 of Human Immunodeficiency Virus Type-1 Reverse Transcriptase in the Polymerase Function and Fidelity of DNA SynthesisBiochemistry, 1996
- Analysis of mutations at position 184 in reverse transcriptase of human immunodeficiency virus type 1Antimicrobial Agents and Chemotherapy, 1995
- Rapid Changes in Human Immunodeficiency Virus Type 1 RNA Load and Appearance of Drug-Resistant Virus Populations in Persons Treated with Lamivudine (3TC)The Journal of Infectious Diseases, 1995
- Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infectionNature, 1995
- HIV resistance to reverse transcriptase inhibitorsBiochemical Pharmacology, 1994
- High-level resistance to (-) enantiomeric 2'-deoxy-3'-thiacytidine in vitro is due to one amino acid substitution in the catalytic site of human immunodeficiency virus type 1 reverse transcriptaseAntimicrobial Agents and Chemotherapy, 1993
- Activity of a novel quinoxaline derivative against human immunodeficiency virus type 1 reverse transcriptase and viral replicationAntimicrobial Agents and Chemotherapy, 1993
- The same mutation that encodes low-level human immunodeficiency virus type 1 resistance to 2',3'-dideoxyinosine and 2',3'-dideoxycytidine confers high-level resistance to the (-) enantiomer of 2',3'-dideoxy-3'-thiacytidineAntimicrobial Agents and Chemotherapy, 1993
- Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosidesAntimicrobial Agents and Chemotherapy, 1993