Quantum Yields of Crude Oils

Abstract
Fluorescence quantum yield measurements are reported for visible and UV excitation for neat and dilute crude oil solutions, extending earlier work with excitation in the long wavelength visible and the NIR. Large and monotonically increasing quantum yields are found with shorter wavelength excitation (to 325 nm), and all crude oils are shown to have nearly the same relative dependence of quantum yield on excitation wavelength. These observations are explained by the energy dependence of internal conversion. Dilute solutions of light crude oils exhibit higher quantum yields than those of heavy crude oils because of their lack of large chromophores. The fraction of fluorescence emission resulting from electronic energy transfer (with subsequent fluorescence emission) for neat crude oils was previously shown to vary from ∼100% for ultraviolet excitation to ∼0% for near-infrared excitation; this large variation correlates well with and is explained by the very large variation in quantum yields with excitation wavelength. Comparison of quantum yields from neat and dilute solutions shows that quenching is the other major process which occurs with chromophore interactions. The quantum yields of a maltene and resin are large and similar, while the asphaltene exhibits much smaller quantum yields because of its lack of small chromophores.