Applications of shape memory alloys in optics

Abstract
The application of shape memory alloy (SMA) thin films in optical devices is introduced and explored for the first time. Physical and optical properties of titanium–nickel (TiNi) SMA thin films change as these films undergo phase transformation on heating. An optical beam can be modulated either mechanically with a TiNi actuator or by the changes that occur in TiNi’s optical properties upon heating and phase transformation. Reflection coefficients of TiNi films were measured in their so-called martensitic (room-temperature) and austenitic (elevated-temperature) phases. The reflection coefficients of the austenitic phase were higher than those of the martensitic phase by more than 45% in the wavelength range between 550 and 850 nm. Also, a microfabricated TiNi diaphragm with a 0.26-mm-diameter hole was used as a prototype light valve. The intensity of the transmitted light through the hole was reduced by 10%–17% when the diaphragm was heated. A novel TiNi light valve fabricated by using silicon micromachining techniques is also proposed and discussed. We present both optical data and structural data obtained by using transmission electron microscopies.

This publication has 5 references indexed in Scilit: