Direct Observation of Intermixing in GAAS/AIAS Multilayers After Very Low-Dose Ion-Implantation

Abstract
We combine chemical lattice imaging and digital vector pattern recognition to study quantitatively, kinetic intermixing in GaAs/AlAs multilayers. We thus obtain, with atomic plane resolution and near-atomic sensitivity, composition profiles across each interface of a multilayer stack before and after ion-implantation. Our results show significant intermixing even when only one 320 keV Ga+ ion is implanted at 77 K into each 2000 A2 area of the interface. This corresponds to an incident ion dose of 5×l012/cm2.The intermixing is not uniform along the interface. At each interface, we observe more intensely intermixed regions, whose widths correspond to those created by the damage track of a single implanted ion, as expected from Monte-Carlo simulations. It thus appears that we can directly image intermixing due to single energetic ions implanted into the multilayered GaAs/AlAs structure.