Decreased membrane potassium permeability and transport in human chronic leukemic and tonsillar lymphocytes

Abstract
Human blood T-lymphocytes increase their potassium (K+) permeability and active K+ transport following lectin or antigen stimulation. We have studied the permeability and active transport of K+ by lymphocytes in chronic lymphocytic leukemia (CLL) to determine if their membrane K+ transport was similar to resting or lectin-stimulated normal blood lymphocytes. K+ transport was assessed both by the rate of isotopic 42K+ uptake and by the rate of change in cell K+ concentration after inhibition of the K+ transport system with ouabain. CLL lymphocytes had a marked decrease in membrane K+ permeability and active transport of K+ when compared to blood T lymphocytes. K+ transport in five subjects with CLL (10 mmol. 1 cell water−1. h−1) was half that in normal blood T-lymphocytes (20 mmol. 1 cell water−1 h−1). Phytohemagglutinin (PHA) treatment of CLL lymphocytes did not increase significantly their active K+ transport, whereas K+ transport by normal T-lymphocytes increased by 100%. Since there were 73% T-lymphocytes in normal blood and 14% in CLL blood, the difference in membrane K+ turnover could be related either to neoplasia or to the proposed B-lymphocyte origin of CLL. We studied human tonsillar lymphocytes which contained a mean of 34% T-cells. In five studies of tonsils, K+ transport was 14 mmol. 1 cell water−1. h−1 and treatment with PHA increased K+ transport only 30%. The intermediate values for basal K+ transport and K+ transport in response to PHA in tonsillar lymphocytes were consistent with the proportion of T-lymphocytes present. These data suggest that B-lymphocytes have reduced membrane permeability and active transport of K+. Thus the marked decrease in CLL lymphocyte membrane K+ permeability and transport may be a reflection of its presumed B-cell origin, rather than a membrane alteration related to malignant transformation.