The Dielectric Properties of Water in Solutions

Abstract
Results of dielectric constant and loss measurements at λ=9.22, 3.175, and 1.264 cm are given for a wide variety of aqueous solutions of ions and organic molecules. The water relaxation time is shortened by positive ions and lengthened by hydrogen bond‐forming molecules. The properties of water are treated by a statistical method in which the numbers of molecules in four, three, two, one, and zero‐bonded states are estimated from dielectric and latent heat data. Fair agreement with experiment is obtained in calculating the static dielectric constant of ice at 0° and water from 0–370°C, using Kirkwood's dielectric theory and Verwey's calculation of the dipole moment of a four‐bonded water molecule. The effects of temperature and solutes on the water relaxation time are discussed in terms of this statistical method. The effective number of water molecules ``irrotationally bound,'' i.e., prevented from turning in the electric field by the ion or the organic molecule, is estimated from the depression of the low frequency dielectric constant, using a dielectric theory of mixtures. This number is zero for uncharged solute molecules but is finite for organic or inorganic ions.

This publication has 30 references indexed in Scilit: