Mirror quality and efficiency improvements of reflective spatial light modulators by the use of dielectric coatings and chemical-mechanical polishing

Abstract
To date, silicon backplane spatial light modulators have been characterized by poor-quality mirrors. Hillock formation during metal sintering has been identified as the source of this problem. Here hillock elimination is achieved by constraining the metal with a low-temperature plasma-enhanced chemical-vapor deposition silicon dioxide coating. A double-layer metallization procedure increases the silicon area available for circuitry and improves the mirror fill factor. Second-layer metal mirrors require a flat, intermediate dielectric substrate. Chemical-mechanical polishing is demonstrated to provide the flatness necessary to achieve high optical quality.